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ABSTRACT 

Data sharing and collaboration are vital to the suc-
cessful implementation of network-centric warfare. This 
paper discusses a novel approach to data sharing and 
collaboration based on sharing data objects instead of 
just sharing the data itself.  Sharing objects permits not 
only data sharing, but also the sharing of the methods 
required to interpret the data.  The net result is a shared 
object framework that enables multiple clients to create 
data objects locally, drive those objects to an interesting 
state and then share the objects and their subsequent fu-
ture state transformations among interested clients. As 
described, the system is extensible because clients may 
introduce new objects as needed. 

1. INTRODUCTION 

The concept of network centric warfare (NCW) re-
lies heavily on shared information. NCW translates 
information superiority into combat power by effectively 
linking knowledgeable entities in the battlespace. Sensor 
netting, data fusion and information management tech-
nologies implement the processes for generating better 
battlespace awareness but it is being able to collaborate 
this information among individuals that is at the heart of 
the warfighter’s ability to exploit the enhanced aware-
ness (Alberts, 1999). 

As data becomes more sophisticated its sharing be-
comes more difficult. Instead of simply sharing data, 
applications using the shared data must also have shared 
code to interpret the data. As an example, consider shar-
ing a high resolution military plan that describes the 
mission state over the course of the mission. Storage of 
the time variant plan state data presents a problem. In 
essence, the problem is how to store the values for the 
plan state variables as a function of time? In other words, 
how does the plan data represent a function such as S = 
F(t) where S is the value of the state variable at time t? 

Suppose, for example, that the function F represented the 
current amount of fuel held by a given unit. The value of 
F(t) would represent the fuel held by the unit at any given 
time t. How could this be represented in the plan data? 
There are two ways in which this can be done. The first 
way is by sampling the data and storing the samples. Ny-
quist-Shannon sampling theorem says that for bandwidth 
limited functions sampling at twice the highest component 
frequency insures that no information will be lost. This 
means, however, that data consumers require methods to 
recompose the data back into its original form by interpo-
lating between the sample points. The second approach to 
storing F is to actually store the method for F itself. This 
approach requires that clients have access to the method F 
in order to calculate the required values. The net conclu-
sion in either case is that clients using data require shared 
methods in order to correctly interpret the data. In short, it 
is not enough to share just data. In addition to the data, the 
methods to understand the data must also be shared.  

In object-oriented programming, one definition of an 
object is a collection of data and the set of methods that 
manipulate and permit access to the data in the object. This 
realization suggests that an approach to the problem of 
sharing complex data might lie in a system organized 
around sharing objects. We had felt that this pattern might 
provide some interesting insights into solutions for the 
general problem of collaborating data. As a result, we de-
cided to experiment with this architecture by building a 
shared object framework for the development of typical 
collaborative tools such as chat and whiteboards. The goal 
was to try and construct the framework in such a way that 
it had no coupling to the objects being shared.  We be-
lieved such an approach would allow the introduction of 
new objects without changes to the framework.  

The Communications-Electronics Research, Devel-
opment, and Engineering Center (CERDEC) Command 
and Control Directorate (C2D) is involved in providing 
surrogate command and control (C2) systems for use in 
man-in-the-loop (MITL) experiments at various Army 
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Battle Lab locations, so we had the unique opportunity to 
produce a system and then experiment with it in a so-
phisticated battle simulation.  

It has been said that “God made your eyes to plagia-
rize” so our first steps were to examine successful 
collaboration systems to see how they addressed the is-
sues associated with sharing sophisticated data.   C2D’s 
Combined Arms Planning and Execution system 
(CAPES) is a good example of such a system and be-
cause it was developed in our own organization it was 
available for close study. CAPES provides an environ-
ment in which military planners may collaboratively 
develop plans without having to be physically near each 
other. The Command Post of the Future (CPoF) is an-
other example of a richly collaborative application 
permitting a range of real time information sharing using 
text, graphics, charts and maps. Architecturally, some-
what more opaque than CAPES, CPoF demonstrates a 
highly integrated collaborative system.  

Both CPoF and CAPES make use of similar archi-
tectural patterns to implement collaboration but there are 
important differences. Figure 1 shows a simplified  

 

Figure 1. CPoF High-level uForm Sharing 

diagram of CPoF’s sharing architecture. Sharing is based 
on a data structure called the uForm (Maya). uForms 
(pronounced you-form) are uniquely identified collec-
tions of name-value pairs. When a uForm is created it is 
given an identifier that is unique across all clients. Cli-
ents make calls to a framework API to access and change 
the uForms on the server. Sophisticated client-side buff-
ering makes the operation as efficient as possible. 
Changes made to the uForm are collaborated through the 
server to all interested connected clients. CPoF stores 
virtually everything as uForms including collections of 
uForms. This architectural regularity permits virtually 
everything to be collaborated. Unlike objects, however, 
uForms are purely data and there is no enforced connec-
tion between uForm data and methods that manipulate it. 
A client knows how to process data based on the type of 

the data. uForms can reference other uForms and this ca-
pability is used extensively within CPoF to describe the 
meaning of data through the concept of roles. Code within 
clients can inspect the uForm roles and make display and 
processing decisions based on what is found. This capabil-
ity is similar to the reflection concept found in some 
programming languages such as Java or C#. Although 
uForms are not objects because they don’t have methods 
associated with them, the way in which CPoF encodes and 
shares information exclusively through uForms makes the 
uForm an interesting pattern. 

CAPES takes a similar, but different approach to solv-
ing the collaboration problem (C2D, 2002). The high-level 
CAPES architecture is shown in Figure 2. 
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Figure 2. CAPES Collaborative Architecture 

As with CPoF, a central server is used but CAPES 
changes this design by keeping local copies of the plan 
data on each client. The client application makes changes 
to the local plan copy, the changes are sent to the master 
copy and then forwarded to all interested clients. When 
new clients join a collaborative session they are given a 
copy of the master plan’s current state from the server.  

This approach has a number of interesting features. 
First of all, local copies of the plan may be quickly ac-
cessed for read only operations. This is similar to the 
buffering scheme provided by CPoF, but provides the ad-
ditional benefit that clients can work in a disconnected 
mode if communications facilities are lost. Some problems 
with the CAPES approach include the fact that the only 
object that is shared is the plan data model (e.g. the ap-
proach is not a generalized object-based approach) and the 
fact that some race conditions will result in the various 
plan copies becoming unsynchronized. For example, be-
cause the client changes its local copy and then 
collaborates the change to other clients, if client A makes a 
change at the same time that client B makes a change, A’s 
database will reflect the changes in the order A, B while 
B’s database will reflect the change in order B, A.  
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2. CATS 

Our implementation of the Collaborative Applica-
tion Tool Set (CATS) attempted to extend good ideas 
from both CAPES and CPoF while trying to avoid some 
of those systems’ shortcomings. CATS is written in the 
C# programming language and is based on the .NET 2.0 
Common Language Runtime (CLR). This environment 
was selected because of its rich support for software 
component management. The .NET CLR provides facili-
ties for object serialization, reflection, custom metadata 
and custom proxy generation that are powerful, inte-
grated and (sometimes) easy to use. Being a research 
project, in most cases we opted for implementation ex-
pediency rather than real world applicability. This means 
that it’s straightforward to develop CATS-based collabo-
rative applications in C#, but if you want to use a non 
.NET language for development (can you say Java?) 
you’re currently out of luck. 

CATS borrows from CPoF in that almost all func-
tionality is provided in the form of shared objects. Early 
in CATS’ development, however, we discovered that 
effective collaboration appears to require three funda-
mental components: shared objects, messaging and 
centralized file storage. We have not yet tried to provide 
the messaging and centralized file storage capability 
through shared objects, but that is a possible future re-
search topic. In what we believe to be an improvement 
over CPoF’s uForms, CATS exchanges serialized objects 
and remote method invocations rather than just data.  

From CAPES, CATS borrows the idea of maintain-
ing local copies of the shared objects with a master copy 
holding the official object state residing on a centralized 
server. Unlike CAPES, however, changes to shared ob-
jects are not performed locally but rather are sent to the 
server. This means, for example, that when client C 
makes a change to a local shared object the object is not 
actually changed but instead the change method call is 
sent to the server. The server sends the change request to 
all clients who have expressed an interest in the specific 
object instance. The list of interested clients includes C 
who receives the change notification and performs the 
required change. The server becomes a sequencing point 
insuring that each client receives data change requests 
(method invocations) in the same order as do all other 
clients. This helps insure that all objects remain synchro-
nized with the server’s notion of the object’s state.  

Our basic design goals for CATS included: 

• Object based. Shared information would be rep-
resented as objects. Client code gains access to 
object data strictly through object interfaces. 

• Location agnostic objects. Object code should 
not care if it is a local non-shared copy, a local 

copy of a shared object or the master copy of a 
shared object. 

• Object agnostic framework. The framework 
should not have special knowledge about objects 
that would require its modification when new ob-
jects are introduced. 

• Shared/local object reference scheme. Applica-
tion code written in the client should reference 
local objects and shared objects in the same way. 

The CATS’ high level architecture as shown in Figure 
3 meets these goals with various degrees of success. 

 

Figure 3. CATS Architecture. 

The system architecture is predicated on the following 
.NET capabilities: 

• Custom proxies. The ability to generate a proxy 
that inserts framework code between a client’s in-
vocation of a method and the method’s actual 
execution. 

• Object serialization. The ability to convert an ob-
ject’s state to a form that can be written and read 
across a communications channel. 

• Reflection. The ability to be able to inspect an in-
stance of an object and determine compile-time 
attributes at run time. This includes the ability to 
discover and call methods. 

• Custom metadata. The .NET framework provides 
user-extensible metadata that works with reflec-
tion enabling the addition of custom metadata 
tags to object methods.  

2.1 How CATS Works 

The basic idea behind CATS is that an instance of a 
shared object is located on the server. In Figure 3 this is 
labeled Master Shared Object. Similar to CAPES’ imple-
mentation, the CATS client also maintains a local copy of 
the shared object. An important CATS’ feature is that the 
object’s implementation is the same on either the server or 
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the client. The same binary code for the object is used on 
both the client and the server. The local copy of the ob-
ject is never directly accessed by the client code. Instead 
the client code makes calls to a proxy. The proxy is gen-
erated at runtime by the framework to exactly match the 
interface implemented by the “real” object. When ac-
cessing an object, client code can reference the object’s 
methods and properties to either get data (read reference) 
or put data (write reference). The proxy examines the 
client call and if the call is a read, then the proxy directs 
the call to the appropriate method on the local copy of 
the object. This makes read references efficient so that 
GUI-like operations such as screen repaints or scrolling 
work with local data. The local proxy/instance may be 
thought of as an object-specific buffering scheme.  

If the proxy determines that the object reference is a 
write operation, then the write is serialized into a mes-
sage and the message is passed to the server. The 
message contains the name of the method/property being 
called and all of the arguments that are being passed to 
the method. The message is, in effect, a serialization of 
the method call. When the server receives the message it 
executes the method call on the master copy of the object 
causing the desired state change on the master copy. The 
server then sends the message to every client that has 
expressed an interest in that particular shared object. The 
list includes the client that originally initiated the opera-
tion. When each client receives the method invocation 
message, each executes the proper method on the local 
copy of the object and the operation is complete. Using 
this technique insures that all of the client’s copies of the 
shared objects are synchronized. 

One of the benefits derived from using the proxy 
scheme is that client code doesn’t “know” if it is refer-
encing a shared object via a proxy or a real local object. 
In fact, the framework creates objects by publishing real 
local objects. The programmatic steps to create an object 
are: 

1. Create a local object. 
2. Make method calls to set its state as desired. 

These calls all execute locally because the ob-
ject is not shared. 

3. Publish the object to the server. 

The publish step assigns a unique identifier to the 
object and serializes the object’s initial state to the 
server. The client code continues using the (now shared) 
object in the same way as it was using the local object; 
only now the object is located on the server and locally 
accessed via a proxy. When a new client accesses the 
shared object it asks the framework to give it access to 
the object. The framework locates the object on the 
server, creates a local version for the accessing client, 
serializes the current master object’s state into the local 

object, notifies the server that the client is interest in the 
object and then creates a proxy for the local instance. From 
this point on the client accesses the shared object as if it 
were a local object. 

Borrowing from CPoF, CATS’ framework itself util-
izes shared objects to help provide functionality to 
applications. The layered “call architecture” is illustrated 
in Figure 4. 

 

Figure 4. CATS Architectural Layers 

Figure 4 shows that the shared object framework actu-
ally uses shared objects to provide some of its own 
functionality. There are several well-known shared objects 
that contain framework information. For example, the 
logged in user list is an object that contains a list of users 
logged into the system. Any application needing the list of 
users can reference this object. The framework itself up-
dates the object whenever a user logs in or out of the 
system. All of the mechanisms for any shared object are 
available for the logged in user list. In this way CATS 
doesn’t need to introduce code uniquely designed to main-
tain its own internal data. 

2.2 Chat Example 

To better understand how an application uses shared 
objects we will consider a simple chat program. The chat 
application we developed to run on CATS is typical and 
supports features such as lists of users in the chat room, 
multi-way chatting and “whispering” for private commu-
nications. The basic CATS UI with a chat window is 
shown in Figure 5. The chat application is one of several 
collaborative tools in CATS. The current CATS UI is bro-
ken into two screen panels. On the left, as shown in the 
figure, is a list of currently visible shared objects. The 
demonstration version of CATS implements several differ-
ent types of objects such as chat, whiteboard and shared 
files. Object names can be hierarchical. For example, the 
1stCAB folder in the figure has both fires and intel chat 
rooms. Users can access the shared objects by dragging 
them from the left panel to the right panel. In Figure 5, the 
Example chat room has been dragged into the right side so 
the user can interact with it.  
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Figure 5. CATS Is a Multi-document UI 

The resulting chat room is pretty typical and provides a 
list of chat members, an area to enter data and the list of 
on-going chat messages. The room is implemented as 
shown in Figure 6.  

UI Chat Room
Shared Object

Text
Change
Events

 

Figure 6. Chat Room Shared Object 

The chat room is an instance of a shared chat room 
object that maintains a list of chat messages and a list of 
users who are currently logged into the room. The chat 
UI updates the room object instance by making calls to 
the room’s add message method. The UI receives notices 
of changes to data in the room via a change event. Be-
cause the object is shared, any changes made to the room 
by any client results in all of the clients currently access-
ing the room being updated. Because the room is really 
implemented on the server, the server’s master copy of 
the shared object maintains room’s state. This provides 
the unexpected (and useful) feature of being able to see 
the results of previously on-going chatting immediately 
upon accessing the room. In other words, when the user 
accesses a room, the system serializes the room’s current 
state which contains previous chat messages. 

All shared objects in CATS are derived from a 
common base class providing methods for typical object 
functions such as a method that is called whenever the 
object is accessed by a client. In the case of chat, the chat 
room object uses this feature to keep track of the users 
currently accessing a given chat room.  

2.3 Whiteboard Example 

Implementation of a whiteboard in CATS demon-
strates an additional set of interesting problems. The 
CATS whiteboard is pretty primitive, but serves as an 
effective model for a more sophisticated implementation. 
In many ways a whiteboard is similar to a chat program, 
except that instead of chat messages being collaborated 

the whiteboard collaborates the drawable objects appearing 
on the board.  

 

Figure 7. CATS Whiteboard Example 

Figure 7 shows a typical CATS whiteboard being used to 
create a user-defined display. The user has created several 
indicator shapes (in this case just colored circles). The 
shapes may be changed to indicate a change in logistical 
readiness, for example.  

Just as with the chat application, the whiteboard appli-
cation is based on a shared object implementing a 
container which, in this case, holds the drawables. There 
are methods to add and remove drawables from the white-
board and as with the chat example, the UI code calls these 
methods and, in turn, is called by the instance of the 
whiteboard object when there are changes made by other 
clients so that the UI may be updated.  This scheme, how-
ever, presents an interesting problem. CATS is object 
based, but there can be no address references to objects. In 
other words, the collection of objects representing the 
drawables each must have a unique identifier, but the iden-
tifiers cannot be addresses. The red circle in the figure, for 
example, will have a different address in each client that 
displays the whiteboard so addresses cannot be used to 
identify specific instances of objects within containers. 

To solve this problem, we introduced the ability to 
adorn methods and properties in shared objects with cus-
tom metadata. .NET supports the notion of custom 
metadata in its custom attribute feature. We defined sev-
eral custom attributes to give the framework additional 
information about the intended use of the method or prop-
erty. In CATS, the custom metadata is largely concerned 
with where the code for the method is to be executed. We 
can, for example, specify that a method, even in read 
mode, is to be executed on the server rather than in the 
local copy of the object.   

This concept was used to generate unique IDs for the 
drawable objects in the whiteboards. The idea was to gen-
erate a guaranteed unique identifier for each drawable. The 
drawables could then be referenced using that ID and the 
references would be valid across all clients. A simple 
method to generate IDs is part of the whiteboard object. 
The code for the method is shown in Figure 8. 
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[Remote] 
[DontCollaborate] 
public int GetObjID( ) { 
 return ++NextID; 
} 
private int NextID = 0; 

 
Figure 8. Code to Generate IDs 

The [Remote] adornment indicates to the client proxy 
that this routine must be executed on the server. Calling 
the GetObjID method from any client via the proxy 
will result in a message being sent to the server. The 
[DontCollaborate] indicates to the server version 
of the object that the method invocation should not be 
collaborated to other clients. The net result is that the 
GetObjID method will be executed on the server for 
any client call which will result in unique IDs being gen-
erated.  

The ability to provide the custom metadata tags for 
methods and properties is an important feature in the 
CATS framework and helps insure that object code can 
be the same on both the client and the server. This may 
be thought of as a way of extending reflection. Because 
the CATS framework is loosely coupled with the objects 
it manages, new objects can be added to the application 
without having to change the underlying framework. The 
CATS framework “understands” the objects by using 
reflection to examine the object in order to figure out 
how the object is to be used. The custom metadata pro-
vides a way for the programmer to communicate with the 
framework. 

2.4 Workspaces 

Because CATS is object-based we found that we 
could easily implement collections of shared objects 
which were themselves shared. This provides a useful 
workspace concept that effectively mimics CPoF’s 
pasteboard feature. (Maya, CPoF) 

 

Figure 9. Workspace with Chat and Files 

 

Users can assemble workspaces (collections of shared 
objects) which are then themselves shared. A good exam-
ple is a collection of shared files along with a chat room 
describing their use. In CATS, the workspace is a shared 
object that is a container for other shared objects. The 
workspace object contains a list of object identifiers and 
information about how the objects should be presented in 
the workspace. This information includes the size of the 
window displaying the object and the location of the win-
dow within the workspace. 

Figure 9 shows a workspace with a chat room and a 
collection of shared files. Shared file collections are an-
other type of CATS shared object that can contain a list of 
files accessible to any client. The workspace in Figure 9 
demonstrates how shared objects may be aggregated to-
gether to form higher order shared constructs. One 
problem that occurs as a consequence of workspace aggre-
gation of shared objects is the behavior when an object is 
deleted. Currently when objects are deleted all of their 
references are deleted as well. This means, for example, 
that when an object in a workspace is deleted, the resulting 
workspace has a visual “hole” in it where the object used 
to be. A different approach might be to provide reference 
counts so that objects aren’t deleted until all references to 
them are also deleted.  

3. EXTENSIBILITY 

The CATS’ capability set is fairly straightforward to 
augment through the addition of new objects. As it cur-
rently works, the CATS application contains two 
executable files: the server and the client. Both the client 
and the server are required to have access to .NET assem-
blies that contain the definition for the objects.  .NET’s 
binary object deployment scheme is based on assemblies 
that behave much like DLLs.  

Extensibility is still not as clean as we would like it 
for two reasons. First are the problems associated with the 
deployment of new objects. When a programmer develops 
a new object, the object must be provided to all client loca-
tions. A better approach would be to have the object 
loaded on the server and to then have the code for the ob-
ject automatically deployed to the clients upon reference. 
The new MS “One Click Deployment” could be used to 
implement such a scheme.  

The second problem with extensibility comes from 
how much the system still has to know about the objects. It 
is true that the framework inspects the objects using reflec-
tion and much of the work for integrating objects into the 
CATS application is done at run time, but there are details 
that are still not a clean as we would like them. For exam-
ple, client menus need to be hand modified in order to 
accommodate new object types. A better approach would 
be to define interfaces each object implements which de-
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scribes the menus and icons that will be used to allow the 
user to gain access to the objects.  

Apart from these two short comings, however, the 
CATS system is relatively easy to extend. One aspect of 
extensibility that has proven very useful is the fact each 
object brings along its own implementation. This means 
that no client code need be developed to access the 
shared data that the object represents.  

 

Figure 10. Viewers Display Objects 

Although CATS objects simply represent data and 
as such can be used by any application wishing to access 
that data, we found it useful to optionally couple viewers 
to the data. One of the methods that each shared object 
supports is a GetViewer method. This method returns 
a list of viewer objects (.NET controls) that understand 
how to display the contents of the object. This technique 
permits users to easily view data objects and is used ex-
tensively in the creation and display of workspaces. 
Dropping an object into a workspace or accessing an 
object through the CATS UI gives the user access to the 
appropriate viewer.  

Each data object may have any number of selected 
viewers displaying its state. This means that a single ob-
ject may support different views. Spot reports, for 
example, could be viewed geospatially on a map or they 
could be viewed in a spreadsheet. CATS could support 
both of these views. In addition, multiple views of the 
same object are updated at the same time when changes 
occur to the shared object. 

In retrospect, the connection between viewers and 
data objects may have been made too tightly coupled. A 
better implementation might have been to have shared 
objects support multiple interfaces with each interface 
defining the semantics of that particular type of data. 
Viewers would be able to display any object implement-
ing a specific interface. 

4. ADDITIONS TO SHARED OBJECTS 

The CATS system was recently used for a logistical 
Computer Assisted Map Exercise (CAMEX) at Combat 

Service Support Battle Lab (CSS-BL). In preparing for the 
exercise, we developed several collaborative applications 
based on the CATS framework. These applications in-
cluded chat, email, and file sharing. Based on this 
experience, we extended the CATS shared object system to 
include two features in addition to shared objects. These 
were: 

1. Central file storage. Originally, we had thought that 
we could create shared objects individually represent-
ing files, but this quickly became unwieldy. Instead, 
we opted for a scheme by which files could be moved 
to the server, assigned a unique id and then be re-
trieved by any client. This effectively provides a 
URL-like construct for files that proved useful for file 
attachments and for file sharing objects. 

2. Messaging. Although messaging could be imple-
mented using shared objects, we found that given our 
hub-spoke server pattern, it was more efficient to in-
troduce messaging to the framework. Our messaging 
system models email in that it provides the ability to 
send a message object to one or more currently con-
nected users. Messaging is useful for instant message 
invitations, whispering, and email. 

The net result is that the current CATS system pro-
vides all three collaborative features: Shared objects, 
centralized file storage and messaging. Given these basic 
capabilities, we found implementing collaborative applica-
tions to be straightforward. The programming model is 
easy to understand and being able to create local objects 
that are then published as shared objects provides the abil-
ity to get the object in the proper state before sharing it 
with others. Arranging objects on a map or whiteboard 
before sharing is a good example of where this is useful.  

5. CONCLUSION 

The CATS system has proven useful in an experimen-
tal environment and has shown that the shared object 
paradigm can be used to implement a class of collaborative 
applications with relative ease. Because each object brings 
with it code to interpret its data, the introduction of new 
objects extends the client applications that access them 
without the need to develop duplicative code. In addition, 
the objects encapsulate the data thereby making changes to 
the internal data representation much easier. We could, for 
example, alter the way in which chat data is stored without 
altering the client code that uses the data. We could, for 
example, replace the simple text representations of chat 
messages with a rich text version if we wanted chat to sup-
port different fonts and colors. 

The pattern implemented by CATS is an interesting 
one that we will continue to investigate but as is always the 
case, successes lead to more questions. The CATS imple-
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mentation suggests that there is room for additional re-
search in how to more effectively control access to the 
shared objects and the types of data they contain. This 
could include addressing the following issues: 

• Dynamically object download. CATS clients need to 
have the libraries containing object code present on 
their computers. An interesting enhancement would 
be to download object definitions on demand. This 
would make extensibility even more flexible. 

• Controlled namespaces. The current CATS system 
places all objects in a single namespace. It would be 
interesting to explore how to control access to ob-
jects by developing multiple namespaces accessible 
based on user security credentials.  

• Object ownership. CATS currently treats all shared 
objects as common property. This means, for exam-
ple, that if Marv creates a chat room object, Tim 
could delete it. Additional work needs to be done to 
create a sense of ownership for objects and hierarchy 
of users to control the ownership. 

• Object Locking. There is no current method to lock 
objects. As a result, all operations on objects need to 
be completed in a single method call. A scheme 
needs to be developed to permit an object to be 
locked and released. This scheme needs to be robust 
against the loss of a client currently locking an ob-
ject. 

• Transactions. Any sophisticated collaborative applica-
tion needs some form of transaction processing. This 
concept is closely aligned with locking. In the CATS 
context it would mean the ability to treat multiple 
method calls as a unit that would be deemed success-
ful or not. If not successful, the call would have to be 
reversed. CATS currently has no facilities for transac-
tional object usage.  

• Live data feeds. Currently, CATS applications are 
largely based on humans entering data (chat rooms, 
whiteboards, etc.) It would be interesting to explore 
ways in which live data feeds could be published with 
CATS. We would envision objects that contain vari-
ous elements of a Common Operating Picture (COP) 
that are updated by COP reception software and pub-
lished through changes made to the shared objects. 
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